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To study a number of problems in the physics of gas discharges (the structure of the 
regions near the electrodes, motionless striations, etc.) a kinetic approach must be used 
to describe the motion of the electrons. When spatial variables are present the most effec- 
tive method of numerical modeling is the Monte Carlo method. However the statistical error 
of this method decreases comparatively slowly (~Nt -I/2) as the number of trajectories N t 
followed is increased, and significant amounts of computer time are required to solve the 
kinetic equation, especially for weak fields E. The total transport scattering cross sec- 
tion o t is usually many times greater than the inelastic scattering cross section o, and 
f0(E, r) - the electron energy distribution function (EEDF) - can be found with adequate 
accuracy on the basis of the two-term approximation (TA) [i] 

-. _ (1) 

Here v is the velocity of the electrons; N is the concentration of atoms; st{f0} is a colli- 
sional term describing the exchange of energy in electron-atom collisions; and, collisions 
between electrons are neglected. The correctness of using the TA in a wide range of values 
of E/N in different gases was demonstrated for spatially uniform situations in a number of 
works (see, for example [2-4]), where the results were compared with the solution of the 
complete kinetic equation. Although the diffusion-drift model, following from Eq. (i), for 
describing the motion of the electrons is the basis for the study of gas discharges, the 
error of theTA in nonuniform fields has never been analyzed. Only the behavior of the EEDF 
in a uniform field near an ideally absorbing anode in a model (no inelastic collisions) gas 
has been studied [5, 6]. The TA is formally applicable at large (Notx ~ i) distances away 
from electrodes under the condition Nots ~ 1 (~ is the characteristic distance over which 
the electric field intensity changes). The calculations of the EEDF performed below for 
neon show that the TA is actually applicable in a much wider range. In this paper the 
choice of boundary conditions for Eq. (i) is also analyzed and an efficient algorithm for 
calculating the solution for Eq. (i) is presented. 

Boundary Conditions. The capabilities of modern computers make it necessary to limit 
the analysis to the one-dimensional case, for example, the behavior of the EEDF between in- 
finite plane-parallel electrodes. We shall study the situation when the reflection of elec- 
trons from the electrodes is insignificant; this problem is more difficult from the view- 
point of the applicability of the TA. Then the following boundary conditions are imposed 
on the electron distribution function f(s, ~, x): 

1(~, ~ > O, = = O) = / i ( s ,  ~), /(~, ~ < O, z = d) = O, (2) 

where ~ is the cosine of the angle between the direction of the electric field and the elec- 
tron velocity; fi is the distribution function of the electrons injected from the cathode; 
the point x = 0 corresponds to the cathode and x = d corresponds to the anode. On the basis 
of the TA we have 

-2-t T~3 (~0 --eE ~...~_)o \ .  / (~ ,  ~t, x)  = /o (~, z )  + ~/1 (~, x),  I1 = - Io, 

and t h e  c o n d i t i o n s  (2)  can be s a t i s f i e d  o n l y  a p p r o x i m a t e l y .  For  t h i s  r e a s o n  t h e  c h o i c e  o f  
bounda ry  c o n d i t i o n s  f o r  Eq. (1 )  i s  somewhat a r b i t r a r y .  The most  commonly employed bounda ry  
c o n d i t i o n s  a r e  M a r s h a k ' s  

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 
5, pp. 3-7, September-October, 1989. Original article submitted December 28, 1987; revision 
submitted April 27, 1988. 

0021-8944/89/3005-0671512.50 �9 1990 Plenum Publishing Corporation 671 



and Mark's 

1 1 o 

x = 0 )  = x = d )  = 0 ( 3 )  
0 0 --I 

/(~:, ~l = ~ , . ,  x = 0 )  = / ~  (~, ~ = ~ . ) ,  f ( ~ ,  ~ = - ~ . ,  x = d )  = o ( 4 )  

(~..~ = 1 / ~ 3  [ 7 ] ) .  The e x p r e s s i o n  (4)  w i t h  D, = 1 was employed in  [5 ,  6 ] .  Our c a l c u l a t i o n s  
show, however ,  t h a t  t h i s  c h o i c e  o f  ~ ,  g i v e s  a h i g h e r  e r r o r  t h a n  t h e  b e s t  o f  t h e  c o n d i t i o n s  
(3)  and ( 4 ) .  Le t  t h e  a n g u l a r  d i s t r i b u t i o n  o f  t h e  i n j e c t e d  e l e c t r o n s  f o l l o w  t h e  c o s i n e  law 
f i ( E ,  ~) = 3 ~ f i ( E ) ,  which i s  t r u e ,  f o r  example ,  f o r  t h e  c a s e  o f  i o n - e l e c t r o n  e m i s s i o n  [ 8 ] .  
Then t h e  e x p r e s s i o n s  (3)  and (4)  assume t h e  form 

co!o(~, x = o) + cJ~(~, z = o) = / ~ ( ~ ) ,  

C~/o(~, x = d) - - A ( ~ ,  x = d) =- 0,, ( 5 )  

where C l = 1/2; for Marshak's conditions C O = 1/4, C 2 = CI; for Mark's conditions C O = 1/2 x 
~3, C 2 = i/~3. When o t >> o in a uniform electric field the average energy of the elec- 
trons is much higher than the energy s, = eE/Not, acquired over the mean-free path length. 
For this reason the electron velocity distribution function is nearly spherically symmetric, 
which is what determines the good accuracy of the TA. If the energy of the injected elec- 
trons is less than ~,, then near the cathode electrons move predominantly along the direc - 
tion of the electric field and the TA overestimates the value of the transmission coefficient 
of the electrons. An analogous situation arises with large gradients of the field in the 
region near the anode, into which low-energy electrons flow. The error of the TA can be re- 
duced by selecting the boundary conditions (5) with variable values of C I and C2, depending 
on the ratio ~ = E,/s. It is not difficult to show that for K >> i, we must set C l = C 2 = i. 
For K << I, Marshak's conditions are best in some strict sense [7]. The simplest interpola- 
tion between these limiting cases 

C l = C 2 = - - f  1 +  t---~- ~ , C o =  T (6) 

a l r e a d y  makes i t  p o s s i b l e  t o  o b t a i n  s a t i s f a c t o r y  a c c u r a c y  f o r  t h e  TA in  a wide  r a n g e  o f  
values of E/N and Not~. 

Algorithmfor the Numerical Solution. Solving Eq. (i) is a quite laborious procedure. 
In many cases, however, the intensity of the electric field in the interelectrode gap does 
not change sign, and it is possible to construct an efficient algorithm for solving (i) num- 
erically. The temperature of the electrons is usually much higher than the temperature of 
the gas, and the heating of electrons in elastic collisions with atoms and in collisions of 
the second kind can be neglected. Then, after making the substitution of variables s = W + 
e~ (~ is the potential of the electric field) Eq. (i) and the boundary conditions (5) can 
be written in the form 

0 v 2 O/o. 0 2m NvO(~tS]o + ~/o = ( 7 )  
Ox 3W(Y t iflx c~W M 

= 4vi (2e + I)/o (2W + er + f ,  x) -~ ~ vh (W -F- el~)/o (W + e1~,x), 
k 

i al~ ~=d = 0. C~ o/o = /i, C 2 / ~  3No t Ox C o f o -  3N(y t c~x x=0 

Here m and M are the masses of an electron and of an atom, respectively; v k = Nv2Ok; v i = 

Nv2oi; ~ = v i + ~vh; o k and gk are the cross section and threshold of excitation 

of the k-th level; o i and I are the ionization cross section and ionization potential; and, 
it is assumed that after an act of ionization the energy of the primary electron is equal to 
that of the secondary electron. A finite-difference scheme which gave a second-order ap- 
proximation in the spatial variable and a first-order approximation in the energy variable 
was employed to solve Eq. (7). The following system of linear equations with a triangular 
matrix is obtained: 

- -a~j /~ j+~ - -  b l j /~ i -~ - - c ~ / ~ + i j  + p~j/~j = ~(/~>~,j), (8) 
where the first index corresponds to W and the second index corresponds to x. Using the 
additional boundary condition for high energies fi0j = 0, the system of algebraic equations 
(8) can be easily solved by the sweep method, which is stable (Pij ~a~] + bij + cij, al7> 
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TABLE 1 

.Nl, 1016 
Cm -2 

4,0 
2,0 
t,0 
0,5 
0,25 
0,t25 

0,7t 
0,8t 
0,88 
0,93 
0,96 
0,97 

K 

0,67 
0,76 
0,84 
0,90 
0,94 
0,96 

I Ni/K ] J~i/K I Va, lO" cm/sec 
! 

t,08 IO 6712 4512,4112 4tl2,4010,9711,021t,071t,0412,64t2,75/t 9319 26 
t,30 0,8212,221~,t~I2,1312,1310 5t10,5~10,5610 5413,2013,4tl2,25h,64 
1,50 0,96 2 o~ t,94 ~ 93 t 93 o,25 0,25 0,29 0:27j3,91mtm,~a/2,96 
1,64 t,06 t,99 t,83 t 8311 8310,t40,,1410,1710,~.614,5t14,7712,7tb,,16 
1,73 1,13 t,92 t, 7 t, 7 t,77 0,t0 0,10 0,1210,1%9915,251z,  t3, 6 

0, bij > 0~ cij > 0). First the solution with i = i o - 1 is found, then the solution with 
i = i o - 2 is found, etc. It is easy to see that the method of solution is noniterative 
and requires the use of only one two-dimensional array fij. This last circumstance is quite 
important, since the algorithm was implemented on a BESM-6 computer, whose chief drawback 
in this case consisted of the fact that its working memory is limited. The results present- 
ed below were obtained primarily on a 150 • 130 grid. The error of the solution was equal 
to 1-2%, and the characteristic computing time for one variant was equal to ~i0 sec. For 
comparison we note that approximately 1 h was required to solve the complete kinetic equa- 
tion by the Monte Carlo method with approximately the same statistical error (N i ~ 2.104). 

Numerical Results. The electron scattering cross sections of neon atoms were taken 
from [9]. The collection of electron levels was replaced by an effective level with an ex- 
citon energy c I = 16.6 eV, To study the correctness of the TA the full kinetic equation 
was solved by the Monte Carlo method using the technique of zero collisions. The energy 
distribution of the injected electrons was taken in the form 

/~(0 < e < el) ~ sin ( ~ e / e l ) / V  ~ / i (e  > el) = 0, 

which qualitatively describes the experimental data on ion-electron emission [i0]. The in- 
terelectrode voltage drop was equal to i00 V. Both a uniform field E(x) = E 0 and a linear 
distribution of the field in the region near the cathode 

E(x<~)= ~ (I--~)+ El, E(x>0= El 
and in the region near the anode 

E ( x < d - - l ) = E 1 ,  E ( x > d - - l ) = - 7 - -  l - - - f +  E I 

w e r e  s t u d i e d .  F o r  t h e  f i x e d  v a l u e s  Uz = 80 V, Ez /N  = 5 . 1 0  - z 6  V.cm 2, t h e  c h a r a c t e r i s t i c  
s c a l e  o f  t h e  n o n u n i f o r m i t y  o f  t h e  f i e l d  Ns = ( 0 . 1 2 5 - 4 ) . 1 0 1 6  cm -2 was v a r i e d .  F o r  c o m p a r i -  
s o n  we n o t e  t h a t  i n  n e o n  t h e  mean f r e e  p a t h  l e n g t h  X i s  v i r t u a l l y  c o n s t a n t  a n d  f o r  ~ = ~ ,  
N1 = 0.35"i0 Is cm -2 

(9) 

(lO) 
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The effect of the choice of boundary conditions on the error of the TA is indicated by 
the data presented in Table i, where K is the transmission coefficient of the electrons, i.e., 
the ratio of the electron current at the cathode to the emission current; N i is the num- 
ber of ionization acts per injected electron; Va is the average velocity of the electrons at 
the anode: the first value represents the results of the Monte Carlo calculations, the se- 
cond value corresponds to the TA with the boundary conditions (6), the third value corres- 
ponds to the TA with Marshak's conditions, and;the fourth value corresponds to the TA with 
Mark's conditions. The second and third columns refer to the field profile (9) and the last 
two columns refer to (i0). As ~ is increased, Marshak's and Mark's conditions give too low 
a value for V~ and too high values for K and N i. For the value of Ni/K presented the error 
of the TA is significantly smaller. The boundary conditions (6) give good accuracy in cal- 
culating the values of Ni, which primarily determines the characteristics of the anode and 
cathode layers (even with s < h). 

The spatial behavior of different functionals of the EEDF also agrees with the exact 
solution. Figures 1 and 2 show the profiles of the ionization rate S i (a) and the electron 
density n (b) in relative units for a nonuniform distribution of the field in the cathode 
and anode regions, respectively (curves 1-3 are for N~ = 4; i; 0.25"1016 cm -2, the solid 
line refers to the TA with the boundary conditions (6), and the dots refer to the calcula- 
tion by the Monte Carlo method). It is of interest to analyze the EEDF on the surface of 
the absorbing anode from the viewpoint of the problems of plasma diagnostics and such an 
analysis was performed in [Ii] for argon with the help of the Monte Carlo method. In this 
paper, we call attention to the good agreement (Fig. 3) between the TA with the boundary 
conditions (6) and the solution of the complete kinetic equation (dots) in a uniform elec- 
tric field (the curves 1 and 2 are the EEDF normalized to unity at the anode with E0/N = 5" 
i0 -I~ and 2"i0 -15 V'cm2). 

The use of the TA with the generally accepted boundary conditions of Marshak and Mark 
leads in many cases to a large error in the calculation of the EEDF in the regions near the 
electrodes. However even a very simple modification of the boundary conditions permits re- 
ducing the error of the TA to 5-10%, which is fully acceptable from the viewpoint of the re- 
liability of the scattering cross sections, employed in the calculations of the EEDF. We 
note that the statistical error of the Monte Carlo method significantly complicates its use 
insolving self-consistent problems, and in these cases the two-term approximation can be 
recommended. 
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PENETRATION OF INTENSE PULSED MAGNETIC FIELDS INTO A CONDUCTOR 

S. M. Ponomarev UDC 538.24.42+517.956 

The penetration of a pulsed magnetic field into an incompressible conductor is treated 
with consideration of Joulean heat liberation. Solutions are obtained for the case of pene- 
tration of a strongly decreasing magnetic field (significantly exceeding the saturation 
threshold) into a conductive semispace with planar boundary at constant specific heat and 
thermal conductivity. It is shown that consideration of the effect of bias current, where 
the limiting magnetic field is specified in the form of a step function, is of principle 
significance as regards both surface heating of the conductor and maintenance of intense 
magnetic fields in experimental equipment with planar boundaries. 

It is well known [i, 2] that penetration of an intense magnetic field H(x, t) into a 
planar incompressible conductor (x > 0) can be described by the equations (in MKS units): 

- - O H / O x  = ] + eoeROE/Ot , OE/Ox = - -popROH/Ot ,  ] = ~E ,  

OQ/Ot = ]2/~ _ Oq/Ox, q = - ~ O 0 / O x  - %Oq/Ot, Q = cvO , ( 1 )  

w h e r e  j ( x ,  t )  i s  t h e  v o l u m e  c o n d u c t i o n  c u r r e n t  d e n s i t y ;  E ( x ,  t )  i s  t h e  e l e c t r i c  f i e l d  
s t r e n g t h ;  e 0 = 8 . 8 5 " 1 0  -12 A ' s e c / ( V ' m ) ;  ~0 = 4 7 " 1 0 - 7  V ' s e c / ( A ' m ) ;  ~R, eR a r e  t h e  r e l a t i v e  
p e r m u t i v i t i e s ,  w h i c h  we a s s u m e  c o n s t a n t  ( w i t h  e i t h e r  ~R = eR = 1, o r  ~R = 1, eR = 0,  i f  we 
n e g l e c t  d i s p l a c e m e n t  c u r r e n t  a s  c o m p a r e d  t o  c o n d u c t i o n  c u r r e n t ) ;  o = c o n s t  i s  t h e  c o n d u c t i v -  
i t y  of the medium; Q(x, t) is the increment in heat content relative to the state at 0~ 
q(x, t) is the thermal flux density; 0(x, t) is the conductor temperature; % is the thermal 
conductivity coefficient; x0 = const is the thermal flux relaxation time; c V is the specific 
heat of the conductor. 

We will note that if the characteristic thermal flux relaxation time is large in com- 
parison with the relaxation time ~0, then q/T08q/St ~ 1 and the fifth equation of Eq. (i) 
transforms to the usual Fourier law q = -%38/8x. And if the thermal flux changes signifi- 
cantly more rapidly than relaxation occurs, then 8q/St m q/T0 and the fifth expression of 
Eq. (i) takes on the form 

, oq  ~, oO 
- ( 2 )  

Ot ~o Ox " 

Neglecting displacement current in comparison to conduction current and taking T o = 0, 
we consider the process of magnetic field penetration into the conducting semispace x > 0 
with the following boundary and initial conditions: 

H(O, t) = Ho, q(O, t) =- 0 ( t >  0); 

~(x ,  O ) = O , Q ( x , O ) = O  ( O < z < o o )  
(3) 

(4) 
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